Evolutionary computing for knowledge discovery in medical diagnosis

نویسندگان

  • Kay Chen Tan
  • Q. Yu
  • C. M. Heng
  • Tong Heng Lee
چکیده

One of the major challenges in medical domain is the extraction of comprehensible knowledge from medical diagnosis data. In this paper, a two-phase hybrid evolutionary classification technique is proposed to extract classification rules that can be used in clinical practice for better understanding and prevention of unwanted medical events. In the first phase, a hybrid evolutionary algorithm (EA) is utilized to confine the search space by evolving a pool of good candidate rules, e.g. genetic programming (GP) is applied to evolve nominal attributes for free structured rules and genetic algorithm (GA) is used to optimize the numeric attributes for concise classification rules without the need of discretization. These candidate rules are then used in the second phase to optimize the order and number of rules in the evolution for forming accurate and comprehensible rule sets. The proposed evolutionary classifier (EvoC) is validated upon hepatitis and breast cancer datasets obtained from the UCI machine-learning repository. Simulation results show that the evolutionary classifier produces comprehensible rules and good classification accuracy for the medical datasets. Results obtained from t-tests further justify its robustness and invariance to random partition of datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis

Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...

متن کامل

A Fuzzy Rule-based Expert System for the Prognosis of the Risk of Development of the Breast Cancer

Soft Computing techniques play an important role for decision in applications with imprecise and uncertain knowledge. The application of soft computing disciplines is rapidly emerging for the diagnosis and prognosis in medical applications. Between various soft computing techniques, fuzzy expert system takes advantage of fuzzy set theory to provide computing with uncertain words. In a fuzzy exp...

متن کامل

A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis

Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...

متن کامل

An Approach to Management of Health Care and Medical Diagnosis Using of a Hybrid Disease Diagnosis System

Introduction: In order to simplify the information exchange within the medical diagnosis process, a collaborative software agent’s framework is presented. The purpose of the framework is to allow the automated information exchange between different medicine specialists. Methods: This study presented architecture of a hybrid disease diagnosis system. The architecture employed a learning...

متن کامل

بررسی کاربردهای داده کاوی در نظام سلامت

Introduction: Extensive amounts of data stored in medical databases require the development of specialized tools for accessing the data, data analysis, knowledge discovery, and the effective use of the data. Data mining is one of the most important methods. The article sketches the used Data Mining techniques, and illustrates their applicability to medical diagnostic and prognostic problems. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2003